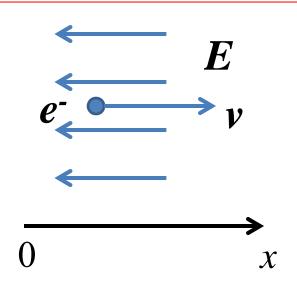
EE 331 Devices and Circuits I


Chapter 2 Conduction in Semiconductors

Announcements

- HW 0 Posted on Monday. Due in class on Friday 04/04/2014.
- Lab 0 starts next week. Be read lab handbook and Description for Lab 0 before your lab sessions.
- Office Hours:
 - Monday, Wednesday 2:00-3:00 pm @ EE 218

Electrons in Motion

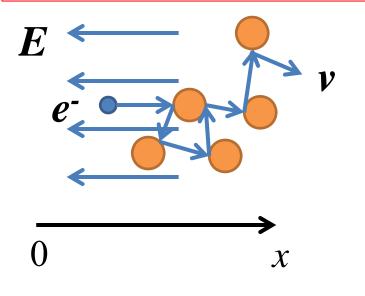
Constant electric field in vacuum

Force on the electron:

$$F = -qE$$

Newton's 2nd Law:

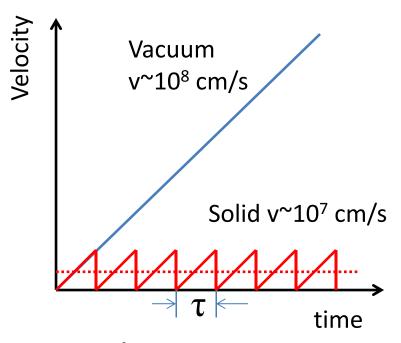
$$q = 1.6 \times 10^{-19} \text{ C}$$
 $q = 1.6 \times 10^{-19} \text{ C}$
 $q = 9.11 \times 10^{-31} \text{ kg}$
 $q = \frac{F}{m} = -\frac{qE}{m}$


Velocity:

$$v = at \propto t$$

In vacuum, constant E field causes electrons to accelerate at a linearly increasing velocity

Electrons in Motion


Constant electric field in a solid

Electron flies for short intervals (~ps) before bumping into scattering objects

Result: Electron's average velocity proportional to field $v \propto E$

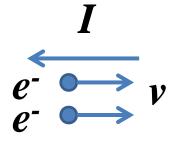
Electron in Motion

Electron's average velocity proportional to field

$$v = -\mu E$$

 μ : Mobility

$$[\mu] = \frac{[v]}{[E]} = \frac{a\tau}{[E]} = \frac{q\tau}{m}$$
$$[\mu] \sim \frac{\text{cm/s}}{\text{V/cm}} = \frac{\text{cm}^2}{\text{V} \cdot \text{s}}$$


Example:

$$|E| = 10^4 \text{ V/cm}, \mu = 200 \text{ cm}^2/(\text{V} \cdot \text{s})$$

 $|v| = \mu |E| = 2x10^6 \text{ cm/s}$

Current and Current density

- Current: flow of electrons in a medium
- Direction convention: opposite to electron flow
- Current = charge / time

$$I = \frac{Q}{t} \quad [A]$$

- Ampere (A) = Coulomb (C) / second (s)
- Current density: current per unit area

$$j = \frac{I}{S} \quad [A/cm^2]$$

Current density

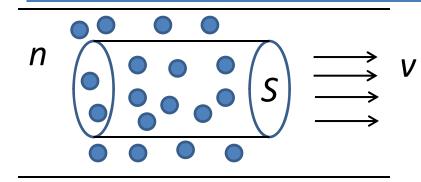


Image a group of electrons are passing through a wire with speed *v*. Pick a small area S perpendicular to the flow direction.

During a short time period *t*:

- Which electrons can pass through area S? All the electrons in the cylinder with area S and length of vt
- How many of them are there? $N_e = n \cdot V = n \cdot vt \cdot S$
- How many charges do they carry? $Q = (-q)N_e = -qnvtS$
- What is the current? I = Q/t = -qnvS
- What is the current density? j = I/S = -qnv

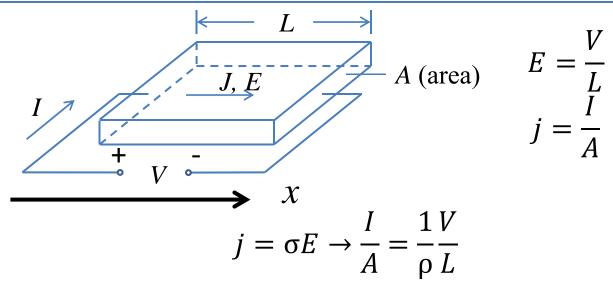
Current Density & Conductivity

Current density = product of carrier charge, carrier density, and velocity (= product of charge density and velocity)

$$j = -q n v \longrightarrow \text{Electron velocity [cm/s]}$$

Charge on each Electron [C] ← Electron density [cm⁻³]

Intrinsic Ohm's Law: (Drift current density in an electric field)


$$j = -qnv = -qn(-\mu E) = qn\mu E = \sigma E$$

where $\sigma = qn\mu$ is the conductivity.

$$[\sigma] = \frac{[j]}{[E]} = \frac{A/cm^2}{V/cm} = \frac{1}{\Omega \cdot cm}$$

Resistivity: $\rho = \frac{1}{\sigma} [\Omega \cdot cm]$

Resistance & Conductance

Extrinsic Ohm's Law

$$V = \rho \frac{L}{A}I = RI$$

where $R = \rho \frac{L}{A}$ is the resistance $[\Omega]$.

Conductance:
$$G = \frac{1}{R} = \sigma \frac{A}{L} [\Omega^{-1}].$$

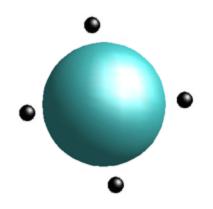
Electronic Materials

Electrical characterization of materials

- Insulators $\rho > 10^5 \Omega \cdot \text{cm}$
- e.g. Diamond $\rho = 10^{16} \Omega \cdot \text{cm}$
- Conductors $\rho < 10^{-3} \Omega \cdot \text{cm}$

e.g. Copper
$$\rho = 3 \times 10^{-6} \Omega \cdot \text{cm}$$

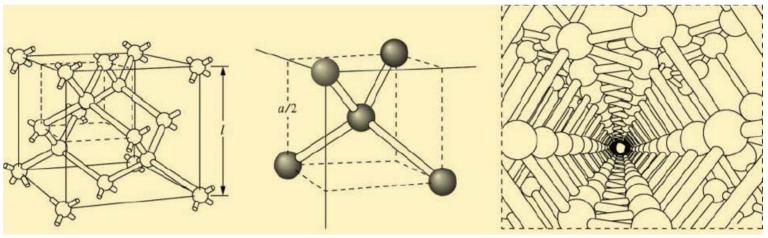
- Semiconductors ρ in between
 - Elemental semiconductors (e.g. Si)
 - Compound semiconductors (e.g. GaAs)



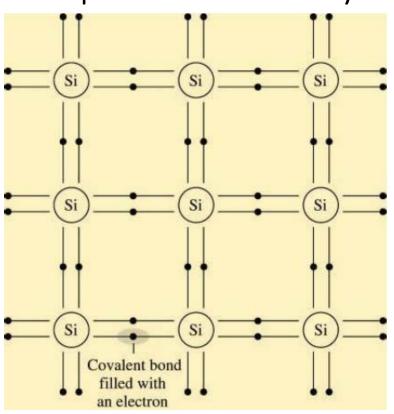
Semiconductor Materials

	IIIA	IVA	VA	VIA
	5 10.811 B Boron	6 12.01115 C Carbon	7 14.0067 N Nitrogen	8 15.9994 O Oxygen
IIB	13 26.9815 Al Aluminum	14 28.086 Si Silicon	15 30,9738 P Phosphorus	32.064 S Sulfur
30 65.37 Zn Zinc	Ga Gallium	32 72.59 Ge Germanium	33 74.922 As Arsenic	34 78.96 Selenium
48 112.40 Cd Cadmium	49 114.82 In Indium	50 118.69 Sn Tin	51 121.75 Sb Antimony	52 Te Te Tellurium
80 200.59 Hg Mercury	81 204.37 Tl Thallium	82 207.19 Pb Lead	83 208.980 Bi Bismuth	Polonium

Semiconductor	Bandgap	
C (diamond)	5.47	
Si	1.12	
Ge	0.66	
Sn	0.082	
GaAs	1.42	
GaN	3.49	
InP	1.35	
BN	7.50	
SiC	3.26	
CdSe	1.70	


Silicon

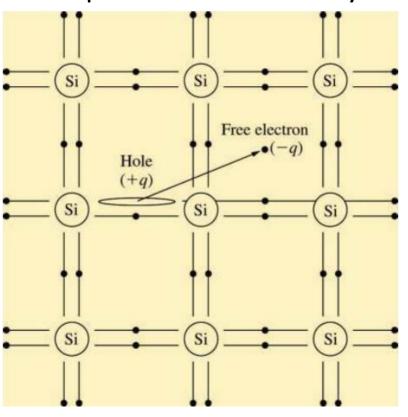
¹⁴Si: 1s² 2s² 2p⁶ 3s² 3p²


4 outer electrons (sp³ hybridization)

=> tetrahedral bonding network

Carrier Concentration - Silicon

2d representation of Si crystal structure (T = 0K)



- Si forms 4 symmetric bonds
- Each bond has 2 electrons
- At 0 K, all electrons are bound by the Si atoms and are immobile => No free charge carriers for conduction => perfect insulator $(\sigma=0, \rho=\infty)$

$$\sigma = q\mu n$$
, $n = 0$

Carrier Concentration - Silicon

2d representation of Si crystal structure (T > 0 K)

- At T > 0 K, thermal energy inside the crystal can excite small amount of bound electrons into free electrons, leaving a hole in the bond
- Density of these free electrons (and also holes) is called the intrinsic carrier concentration